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We study the deformation and breakup of a low-viscosity slender drop in a linear 
flow, iP = i* X, assuming that the drop remains axisymmetric. We find that the drop 
stretches as if it were immersed in an axisymmetric extensional flow with a 
strength 6: iniii, where b = (i-+ IT), and iiiis the orientation of the drop, and rotates 
as - if it were a material element in a hypothetical flow M= Gb+Q,  where 
SZ = !j(p-L), and G is a known function of the drop length. The approximations 
involved in the model are quite good when M has only one eigenvalue with a positive 
real part, and somewhat less precise when M has two eigenvalues with positive real 
parts. In the suitable limits the model reduces to Buckmaster's (1973) model for 
axisymmetric extensional flow and to the linear-axis version of the more general 
model proposed by Hinch & Acrivos (1980) for simple shear flow, In establishing a 
criterion for breakup for all linear flows, we find that the relevant quantity that 
specifies the flow is the largest positive real part of the eigenvalues of m, which 
depends on the drop length and the imposed flow. Our predictions are in reasonable 
agreement with the recent experimental data of Bentley (1985) for general two- 
dimensional linear flows and those of Grace (1971) for simple shear and hyperbolic 
extensional flow. We also present calculations for a class of three-dimensional flows 
as an illustration of the behaviour of three-dimensional flows in general. 

1. Introduction 
The study of the deformation and breakup of drops is of both practical and 

theoretical significance. Its origins can be traced back to the work of G. I. Taylor 
(1934), whose objective was an analysis of the formation of emulsions in definable 
flow fields. Much theoretical and experimental work followed since, and an excellent 
review was given recently by Rallison (1984). An assumption in most of the analyses 
to date has been that the undisturbed flow around the drop is linear, the most studied 
being purely extensional and simple shear flows. Though the flow fields encountered 
in practical situations are complex, an understanding of the deformation and breakup 
of drops in linear, unsteady flows seems to be at  the very core of a theoretical 
description of the mixing of immiscible fluids. To a first approximation, the velocity 
field with respect to a moving drop and far from it is 

8"O = (V8)'f ,  

provided that the drop is much smaller than the lengthscale over which the linear 
approximation holds (Rallison 1984). 

In most cases the velocity field in the mixer is unknown; however, studies have 
revealed some predominant features of complex flows encountered in practice. In the 
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context of their ability to stretch material elements there seem to be three kinds of 
flow : flows without reorientation, flows with weak reorientation, and flows with 
strong reorientation. Prototypes of flows without reorientation are all steady 
curvilineal flows (Chella & Ottino 1 9 8 5 ~ ) ~  of a flow with weak reorientation, a 
rectangular cavity flow (Chella & Ottino 19853), and flows with strong reorientation, 
all chaotic flows (Aref 1984; Khakhar, Chella & Ottino 1984). Such considerations 
would be useful for obtaining a qualitative description of drop deformation and 
breakup in complex flows. 

That being our motivation, we study the stretching and rotation of a slender drop 
of relatively low viscosity pi suspended in a fluid of viscosity p .  The flow far from 
the drop is 

p = i . 2  

and the Reynolds number with respect to the drop dimensiofi is vanishingly small. 
In general, i may be a function of time; however, here we consider only slowly 
varying flows so that time-dependent effects are negligible. 

It is well known from experimental studies (Taylor 1934 ; Torza, Cox & Mason 1972 ; 
Grace 1971 ; Bentley 1985) that when the viscosity ratio is low (p = p i / p  4 1 )  drops 
deform into slender pointed shapes prior to breakup. A number of researchers have 
carried out theoretical analyses of this problem for particular flows. Taylor (1964), 
Buckmaster (1972, 1973), and Acrivos & Lo (1978) studied a symmetrically placed 
drop in an axisymmetric extensional flow ; Hinch & Acrivos (1979) studied the effect 
of a non-circular cross-section on a drop oriented along the direction of maximum 
stretching in a two-dimensional extensional flow, and more recently Hinch & Acrivos 
(1980) analysed the effects of vorticity on a drop oriented almost along the 
streamlines in a simple shear flow. Inertial effects were studied by Brady & Acrivos 
(1982) and found to contribute negligibly to the results. In  our analysis we generalize 
some of the previous work to obtain a model that describes the rotation and stretching 
of an arbitrarily placed drop in a linear flow. The analysis, of course, does not apply 
to flows that are too ‘weak ’ to deform the drop substantially, so that the possibility 
of obtaining pointed drops is excluded. Such a case might be encountered when the 
eigenvalues of Vu are purely imaginary. 

As a simplification we assume the drop to be axisymmetric with a linear axis. The 
assumption of a circular cross-section for the drop was first used by Hinch & Acrivos 
(1980) in the analysis of a drop in a simple shear flow. The assumption was justified 
by the authors by the results of the analysis of a drop in a hyperbolic extensional 
flow (Hinch & Acrivos 1979), in which the deviation in the critical strain rate was 
2% as compared with the value predicted by an analysis assuming a circular 
cross-section. Their arguments would be valid for all linear flows with a single 
direction of stretching. In the case of flows with two directions of stretching, which 
is possible for three-dimensional flows, the deviation from the axisymmetric case 
would be higher. An extension of the analysis of Hinch & Acrivos (1979) to the case 
of biaxial extensional flow indicates that the deviation in the length of an inviscid 
drop is about 18 yo from the case with a circular cross-section (Khakhar 1986). 

It is also well known from experiments on drop deformation in simple shear flow 
(Torza et al. 1972; Grace 1971) that the drop axis bends owing to the flow. In our 
analysis this bending is manifested as a variation in the rate of rotation along the 
drop axis. However, the maximum deviation S,,, of the drop axis from a line tangent 
to the axis at the centre of the drop is small. The prediction from the theoretical 
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analysis of Hinch & Acrivos (1980) for a drop at steady state in a simple shear flow, 
in which the deviation is a maximum among linear flows, is 

a,,, = 0.72R0, 

where R, is the radius of the drop at the centre of the drop. The deviation is expected 
to be even smaller in the case of flows that are more extensional than the simple shear 
flow. The conjecture is supported by the experiments of Bentley (1985) for drops in 
mixed flows generated by a four-roller apparatus. Also, one of the limit cases 
presented by Hinch & Acrivos (1980) for simple shear flow (henceforth referred to 
as the Linear-Axis (LA) model), which is based on identical assumptions as our 
analysis, adequately describes deformation and breakup of drops when the rate of 
rotation is chosen as that at the centre of the drop (though the physics of breakup 
is somewhat different when the drop axis is allowed to bend). In our analysis we 
describe the orientation of the drop by a vector tangent to the drop axis at  the centre 
of the drop and neglect any bending of the drop axis that might occur. 

The first part of our analysis closely follows that of Hinch & Acrivos (1980) for 
simple shear flow, the distinguishing feature of the analysis being that it is carried 
out with respect to a frame that is fixed on the drop axis and rotates with it. The 
problem is then reduced to the analysis of a stationary drop in a time-varying flow 
that depends on the rate of rotation of the drop. The resulting model reduces in the 
suitable limits to the LA model of Hinch & Acrivos (1980) for simple shear flow 
and that of Buckmaster (1973) for an axisymmetric extensional flow. The conditions 
for breakup are found by a linear stability analysis of the equation describing the 
drop length. 

The main contribution of this work is to relate the breakup of slender axisymmetric 
drops to the kinematics of linear three-dimensional flows, leading to flow classification. 
The basic objective of flow classification is to define parameters that are appropriate 
functions of the invariants of the flow which reflect its predominant characteristics 
and provide a basis for comparing flows. Olbricht, Rallison & Leal (1982) were the first 
to take into account the interaction between a suspended microstructure and the flow 
in a flow-classification scheme, using an empirical equation to describe the dynamics 
of the microstructure. The present analysis reveals a simple means of taking into 
consideration the modification of the flow by the drop and thus allows the systematic 
study of breakup in any steady linear flow. The predictions of the theory for breakup 
in two-dimensional flows agree well with the data of Bentley (1985) obtained in a 
four-roller apparatus for mixed flows and those of Grace (1971) for simple shear and 
hyperbolic extensional flow. We also present results for a class of three-dimensional 
flows to illustrate the behaviour that might be possible for three-dimensional flows 
in general. 

2. Flow around a slender axisymmetric drop 
We outline here the analysis of the velocity field around a slender pointed drop 

that remains axisymmetric, and a result obtain the deformation and rotation of the 
drop. Further details may be found in Khakhar (1986). 

The undisturbed flow far from the drop with respect to a frame that is fixed on 
the drop axis and rotates with it is given by 

urn = (d.QT+Q*r*QT).x. 
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FIQURE 1. Cylindrical coordinate system ( r ,  $, 2) fixed on the axis of the slender drop. (q, x2, z3) 
and (it1, it2, E3)  are the coordinate axes of the rotating and fixed frames respectively. 

(the overbar refers to quantities with respect to  the fixed frame.) Q = Q ( t )  is an 
orthogonal matrix and relates a vector in the two frames by x = Q*X,  and is to  be 
found from the analysis. Based on our assumption of a circular cross-section, we 
neglect terms in the velocity field containing second-order harmonics of the azimuthal 
angle (q5, see figure l),  which would deform the cross-section and are inconsistent with 
our assumption. The velocity field then reduces to  

v," = a1 x+ (alz cos q5 + aI3 sin 4 )  r ,  

v," = -!p1 r +  (azl cos 4 +a,, sin $) 2, 

v; = (a31 cos q5 - azl sin 9) z + +(a,, - az3) r ,  

where ai, = &ip Q j p  + (1 - 4,) Qip L p *  Q,* 

and at = D:e ie i  (no sum on i).  

The vector ei is the unit vector in coordinate direction i ,  and D is the stretching tensor 
with respect to the moving frame. In  this simplified form the imposed velocity field 
can thus be seen to be composed of an axisymmetric extensional flow of strength a,, 
which depends on the instantaneous orientation of the drop, and a shear flow that 
is non-axisymmetric. 

We construct the disturbance flow generated outside the drop due to the presence 
of the drop by distributions of sources, source doublets and stresslets arranged along 
the axis of the drop. Owing to  the linearity of the creeping flow equations the external 
flow is then the sum of the imposed flow and the disturbance flow. The velocity field 
generated by a line distribution of sources is 

with the constraint 
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and that generated by the source doublets is 

where x = (2, - 8 )  el +x, e, + z3 e,. Distributions of sources and source doublets 
generate no pressure disturbance. The velocity field due to the stresslets is 

v = ?j ds 
(S(s):xx)x 

2 -, 1x15 

and the corresponding pressure disturbance is 

S(s):xx P = 3p ds . 

From the form of the imposed velocity field we determine that we require only the 
components h,, h,, S,,, S,, of h and S. An asymptotic evaluation of the above integrals 
near the drop surface in the limit of slender drops (R-+O) gives the disturbance 
velocitv as 

h, sin # - h, cos # 
r2 

v; x - 7 

where the prime denotes differentiation with respect to x, and R = R(x, t )  specifies 
the drop surface. The associated stress field due to the disturbance is 

x -(Si, 3P cos + +S;, sin #). 
r 

cz x -7(& P 

cr x -(AS;, 2P cos++S;, sin#)--(h, 4P cos#+h, sin#), 

cos#+S,, sin#), 

r r3 

where p is the external viscosity. 
The internal flow is dominated by the pressure gradient along the axis of the drop 

due to the slenderness of the drop and the low internal viscosity, and following the 
arguments of Hinch & Acrivos (1979, 1980) the axial velocity inside the drop is 
approximately given by 

v', x - (R2--72)(P)'+v.e(R), 

4Pi 

where ve = uco + vd. The internal pressure is then easily found to be 

where Pi(t) is the pressure at the centre of the drop. 
We now determine the unknown functions (9, h,, h,, S,,, S,,, R) by imposing the 
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boundary conditions on the surface of the drop. Neglecting the curvature in the axial 
direction, the normal-stress balance on the surface of the drop is given by 

(@-F):nn x a l R ,  

where n is the outward unit normal and u is the surface tension. On substituting the 
expressions for internal and external stresses we obtain 

U 
-2~R'(a, ,+a, , )  cos$+2pR'(a,,+a3,) sin$ = - - p i ,  R 

where the internal viscous stresses are assumed to be negligibly small compared with 
the pressure pi. The normal-stress boundary condition is satisfied if the strengths of 
the distributions of the singular solutions are 

defining the strength of the stresslets, 

h, = (a12+~,,)R'R3, h, = (a13+a3,) R'R3 

the strength of the source doublets, and 

the strength of the sources. The shear stress on the surface of the drop is vanishingly 
small, and the shear-stress boundary conditions are also approximately satisfied by 
the above equations. 

The kinematic condition on the surface of the drop describing the change of radius 
with time is given by 

and, on substituting for the velocity, we find 

R = (azl cos $ + 

B = @(R)  - R'vE(R), 

sin $) x -  2RR'(a12 + a,,) cos $ 

-2RR(a,,+a,,)  sin$- RR'(a12 cos$+a,, sin$) 

U 
4 R  a, R---  a, R'x, +-- 

2P 2P 

where we have used the expressions found earlier for the strengths of distributions. 
The above condition holds if the following relations are satisfied: 

4 R  u & = - a l ( R + R x ) + - - -  
2b 2P' 

2 R R  3RR' 
a2, (1 -) = z a 1 2 ,  

2RR' 3RR' 
('-7) = T a 1 3 '  

The first equation describes the change of the drop shape with time, while the latter 
two describe completely the rotation of the drop since one degree of freedom, of the 
original three, is lost owing to the axisymmetry of the drop. 
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The equation for the evolution of the drop surface is identical in form with the one 
derived for a slender drop in an axisymmetric flow by Buckmaster (1973) and admits 
the following stable solution as shown by Acrivos & Lo (1976) : 

R = R,(1 -x'/P). 
The evolution of the length of the drop is given by 

The complications of the matrices 0 and d are avoided by describing the rotation 
of the drop by the unit vector H oriented along the drop axis. On substituting 

= QT*e, in the equations for rotation found above and simplifying, we obtain 

d~ = ( G b + P ) * H - ( G 6 : H H ) H  

where G = (1 - 5RR'/z)/(  1 + RR'/z),  and b and are the symmetric and antisym- 
metric parts of the velocity gradient tensor. Since G is a function of X, the rate of 
rotation depends on the axial distance along the drop, which physically can be 
interpreted as a tendency for the drop axis to bend. Based on our earlier justification, 
we calculate G at the centre of the drop to be 

1 + 12.5a3/k 
1 - 2.5a3/13 

G =  

In the case of a simple shear flow, and when the drop axis is almost aligned with 
the streamlines, the above equations reduce to those of Hinch & Acrivos (1980) for 
the LA model, and for a drop oriented along the direction of stretching in an 
axisymmetric extensional flow to that of Buckmaster (1973). 

If we define a hypothetical flow with a velocity gradient tensor given by 

= G 6 + H  

the equation for rotation can be written as 

m' = ( W ~ * ) * H -  (6* :HH) m, 

which is the equation for the rotation for a material element. Since G is slightly greater 
than 1, the drop rotates as a material element in a flow that appears to be slightly 
more extensional in character than the imposed flow. The internal circulation within 
the drop seems to 'take up' some of the vorticity of the imposed flow, making the 
flow seem more extensional in character. 

3. Non-dimensionalhation of the model equations 
The characteristic length and time chosen for rendering the equations dimensionless 

are ./pi and 1/p respectively, where 7 = (6:b)t. Based on the quantities defined 
above, the model equations reduce to 

1 1+ 

h = G(M*H-eFz) ,  

- e-- i _ -  
1 2 4 5  E 1 +0.813' 
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where G = (1  + 12.5p/Z3)/(l -2.5p/Z3), E = (ypa/a)p i  is the dimensionless strain 
rate, e = B:mE/?; is the stretching efficiency (Chella & Ottino 1985a), and 

M = (GD+ H)/w 
is the normalized velocity gradient tensor, which defines the hypothetical flow 
according to which the drop rotates. The characteristic time is chosen so that the 
results obtained for the breakup of drops are frame-indifferent. The maximum 
efficiency corresponds to a material element oriented along the direction of stretching 
in an axisymmetric extensional flow (e = di), and this dimensionless form clearly 
shows the upper bound for the rate of stretching of a drop in any linear flow 
given by 

i / lS  .\/g. 

We also note that in the limit of very long drops (Z+co) the parameter G goes to 
1 and the resistance to stretching becomes negligible so that the drop stretches and 
rotates as a material element in the flow. Next we study the breakup of drops in linear 
flows as predicted by the above equations. 

4. Breakup in steady linear flows 
In the context of the model, a drop is said to break when i t  undergoes unbounded 

extension, and this is a consequence of the surface-tension forces being unable to 
balance the viscous stresses due to the imposed flow. The drop might actually break 
by mechanisms that are beyond the scope of this model. Here we derive criteria for 
the breakup of drops in a linear flow which is constant with time. 

The dynamics of stretching of the drop are qualitatively illustrated in figure 2, 
where we have plotted the resistance to stretching offered by the drop versus the drop 
length for different strain rates E. The dashed line shows the asymptotic value of the 
efficiency. For strain rates smaller than the critical strain rate E,  there are two steady 
states, one stable (1,)  and one unstable (Zz). For strain rates higher than the critical 
strain rate there are no steady states, and the drop extends indefinitely. At  the critical 
strain rate the steady state (Zsc) is incipiently stable and the two lines are tangent 
to one another. 

Olbricht et al. (1982) studied the equation of rotation for the case of G being an 
arbitrary constant. In our case (2 is a function of the length of the drop, and the 
equations for stretch and rotation are coupled. At  steady state, however, the 
following relations hold : 

1 4 e ,  = ~ 

2 4 5 E  1+0.82:’ 

M.Ei = AiiHi, e ,  = maxRe(A,), 
i 

where the subscript s denotes the steady state quantities. On physical grounds, a 
steady-state length exists only if the asymptotic efficiency em is positive, where em 
is the largest positive real part of the eigenvalues of M. However, a steady-state 
orientation for the drop exists only if the eigenvalue containing the largest positive 
part is purely real. If the eigenvalue is complex a steady-state length exists, but the 
drop rotates in a plane orthogonal to the direction of maximum compression. 

We now study the stability of the length of the drop by linearizing the equation 
for stretching of the drop about the steady-state length 1,. The stability of the 
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FIGURE 2. Qualitative dynamics of stretching of a slender axisymmetric drop: -, resistance to 
stretching versus the drop length 1 for different strain rates E ;  ---, asymptotic imposed strain. 

orientation is assumed to be unaffected by small changes in the length due to the 
weak coupling between the equations. Hence 

A / A  = tJ(&), 
where A = I-1, and i = I f ( Z ) .  At incipient stabilityf’(I,,) = 0, where I,, is the critical 
drop length, sincef’(E,) > 0 implies instability andf’(Z,) < 0 implies stability. Given 
p and L, we can calculate the largest drop (1,) that can survive in the flow from the 
condition for incipient stability as 

e,l = 1 - 4qc 
az, 21,,.i +o.~z:,)’ 

and subsequently the critical strain rate from 

E, = 4 C  

22 /5em(1 +0.81:,)’ 

Hence the criteria for breakup of drops in any linear flow can be found from the 
equations above. Flows in which em does not exist are not described by this model 
since they would not deform a drop into a slender pointed shape. 

Since em is frame-indifferent (Chella & Ottino 1985a), the criteria derived here are 
also frame-indifferent. The methods of flow classification provide a general framework 
for describing the kinematics of flows, and in the next section we examine the criteria 
for breakup found above in terms of the kinematics of all steady linear flows. 

5. Flow classification with respect to breakup of slender drops 
The above analysis indicates that the relevant flow classification parameter in the 

context of the breakup of slender axisymmetric drops is the asymptotic efficiency e,. 
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We emphasize that e, is the asymptotic efficiency of the hypothetical flow M, which 
depends on the drop length, and takes into account the interaction between the drop 
and the imposed flow. We consider below the behaviour of the asymptotic efficiency 
in terms of the invariants of the hypothetical flow M. 

The two invariants of the hypothetical flow, tr  (Mz) and det (M), which specify the 
asymptotic efficiency, may be expressed in terms of the invariants of the imposed 
flow as 

where 3 is the spin vector, which is related to the vorticity tensor by Q2.b = 
for any arbitrary vector b,  and e, is the efficiency, which is dehed  as 

x b 

- - 
D:m,m, 0 

Y 131 
e- = , ma=-, 

10 I/? is simply the relative magnitude of the vorticity, det ( b ) / y 3  specifies the 
distribution of the extensional component, and e, depends on the orientation of the 
spin vector relative to the principal directions of strain. Since 1 W l / y  is not frame- 
indifferent, neither tr (Mi) nor det (M) are frame-indifferent. However, the asymptotic 
efficiency, which is a function of the two, is, as is obvious from its definition. 

The accessible $ow domain, defined by Olbricht et al. (1982), is a region in the 
(tr (Ma), det (M))-space which encompasses all possible flows for a given G. Following 
Olbricht et al. and Chella & Ottino (1985a), we obtain explicit expressions for e, by 
considering its character in the domain. The range of values accessible by t r  (m) is 

12 tr(M2) 2-00. 

w 

and for each value of tr (Mz) the range of accessible values for det (M) 
(4- 3tr (h@))/32/6 2 det (M) 2 - (4- 3tr (M2))/32/6. 

The above limits are easily obtained by considering the limits of each of the individual 
invariants of the imposed flow given above. (Our results are slightly different from 
those of Olbricht et al. owing to our choice of the characteristic time.) In region BOAB’ 
(figure 3) the largest positive part of the eigenvalues occurs in the root of the cubic 
equation that is purely real, and the asymptotic efficiency is given by 

e3,-+tr(M2)e,-det(M) = 0. 

The dotted lines in figure 3 correspond to (det (M))z - (tr (M2))3/54 = 0. In the region 
BOCB” (figure 3) the largest positive part of the eigenvalues occurs in the 
complex-conjugate roots, and hence the asymptotic efficiency is given by 

-8e3,+tr(h@)em-det(M) = 0. 

Hence in both regions the relationship between tr  (Mz) and det(M) is linear for a fixed 
asymptotic efficiency. From the above considerations we see that flows to the right 
of line DB in the accessible flow domain (figure 3) have a single direction of stretching, 
and thus would be the ones for which the assumption of a circular cross-section is 
most accurate. 

The derivative of the asymptotic efficiency with respect to the steady-state length 
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FIQURE 

Uniaxial extension, 
spin vector parallel 
to extension axis 

Uniaxial compression, 
spin vector parallel 
to compression axis 

B" B B 
3. Accessible flow domain with lines of constant aaymptotic efficienc 

in each region may now be found by implicitly differentiating the appropriate 
equation, and the equations for obtaining the critical length reduce to 

41:c - 1 
= A ,  

1 + o.sz:, 

where 

in region BOAB', and 

2(2em + e,)( I I /,i)B(G - 1) (G + 5 )  A =  y 
in region BOCB". Using one of the above equations, depending on the location within 
the accessible flow domain, we can calculate l:c by solving the corresponding 
nonlinear algebraic equation. The critical strain rate is easily obtained once the 
critical drop length is known. 

I/? .= 0) we find A = 0, hence l:, = and In the limit of purely extensional flows (I 
E, = 0.148/eW. 

Identical results are obtained when the spin vector is aligned with the direction of 
maximum stretching (e, = chi) in region BOAB' or if it  is aligned with the direction 
of maximum compression (e, = -+@) in region BOCB". 
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The results obtained above for general three-dimensional flows are difficult to 
present in a concise form; we therefore calculate criteria for breakup for the following 
two particular classes of flows: 

(1) two-dimensional flows : here we compare our predictions with experimental 
results and compare our model in the appropriate limits with previous theoretical 
results; 

(2) a class of three-dimensional flows with an axisymmetric strain component to 
study the effect of changing the orientation of the spin vector relative to the strain 
axes. 

The main objective of studying flows of type (2) is to elucidate the physics of 
breakup of drops in three-dimensional flows. 

6. Comparison with experimental results 
The breakup of drops has been studied experimentally for two-dimensional flows 

by a number of researchers. Until the recent work of Bentley (1985), experiments 
had been carried out for simple shear (Karam & Bellinger 1968; Tona et al. 1972; 
Grace 197 1 ) and two-dimensional extensional flow (Taylor 1934 ; Grace 197 1 ) . 
Bentley (1985) studied the breakup of drops in planar flows generated by a 
computer-controlled four-roller apparatus. By varying the relative speeds of the 
rollers, a broad spectrum of planar flows could be obtained ranging from pure 
extension to pure rotation. Here we compare the predictions of our model with the 
experimental data of Bentley (1985) and Grace (1971). 

All linear two-dimensional flows can be represented by the following velocity field : 

0, = s y ,  vy = $Sx. 
$ = 1 corresponds to the case of pure extensional flow, $ = 0 to simple shear and 
$ = - 1 to pure rotation. The data of Bentley (1985) were taken for flows with $ 
ranging from 0.2 to 1.  The criteria for breakup in two-dimensional flows are given by 

In this case det (M) = 0. Numerically calculated values of the critical strain rate are 
compared with the data of Bentley (1985) and Grace (1971) in figure 4. For ease 
of comparison with the experimental data we have plotted the more familiar 
dimensionless strain rate defined as 

Ca = S,ua/u 

instead of E,. In figure 5 we compare our predictions with the experimental data for 
scalar deformation defined as 

where R,,, is the radius corresponding to the critical length lsc.  Except for the 
extensional flow data of Grace (1971), the agreement between the two seems to be 
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FIGURE 4. Critical capillary number Ca, versus the viscosity ratio p for two-dimensional flows 
specified by the parameter $. Lines are predictions of the theory for $ = 0, 0.2, 0.4, 0.6, 0.8 and 
1.0 in (a) and (b) .  (a) Data of Bentley (1985) for @ = 0.2 (O) ,  0.4 (V), 0.6 (O), 0.8 (A) and 
1.0 (0). (b)  Data of Grace (1971) for $ = 0 (+) and 1.0 (A). 

reasonably good. According to Bentley (1985), the deviation in Grace's (1971) data 
may be due to the great difficulty in performing experiments in an extensional flow 
manually, since the drop moves away from the stagnation point at an exponential 
rate for the smallest deviations in position. 
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FIGURE 5. Scalar deformation at the point of breakup, DI,, versus the viscosity ratio. Lines 
are predictions of the theory for @ = 0, 0.2, and 1.0 in (a)  and (a). (a )  Data of Bentley (1985) for 
@ = 0.2 (O) ,  0.4 (V), 0.6 (O), 0.8 (A) and 1.0 (0). (a) Data of Grace (1971) for @ = 0 (+) and 
1.0 (A). 
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FIQURE 6. Dimensionless half-length of the drop at breakup is, versus the viscosity ratio p for 
two-dimensional flows specified by $. Lines are predictions of theory for $ = 1 .O, 0.2,O. 1,0.01,0.001 
and 0. 

In the limit of low viscosity ratios, approximate expressions may be obtained for 
the breakup criteria. Two cases are possible. 

(1) When the flow is mostly extensional in character (@ x 1) we find aea,/aZ,lzs, x 0, 
hence l:, x a and 

Ca, x 0.148@-fp-k 

A similar expression (the constant was 0.145) was suggested by Bentley (1985), based 
on physical arguments. When @ = 1 our prediction is the same as that of Taylor 
(1964) and Acrivos & Lo (1976) for an axisymmetric flow, hence the model does not 
distinguish between two-dimensional and axisymmetric extensional flows. This was 
expected, since we do not permit the drop to become non-axisymmetric in our 
analysis. 

(2) When the flow is simple shear ($ = 0) we find ~ea,/~Zs(zsc x -$Z,, em, hence 
li, = $ and 

ca, = O.O501p~, 

which are the results obtained by Hinch & Acrivos (1980) for the LA model for simple 
shear flow. 

In figure 6 we plot the exactly calculated critical length versus the viscosity ratio 
for different flow types. The graph indicates that the above approximations are 
reasonably accurate for most cases of interest.The graph also illustrates the great 
difficulty in obtaining experimental data for breakup of drops in simple shear ; even 
the slightest deviations (@ = 0.001) from simple shear (@ = 0) result in drastic 
changes in the critical length and consequently the critical strain rate for low p. Given 



280 D. V .  Khakhar and J .  M .  Ottino 

0 

10 

W) 

1 

5 

t 

cu = 0.40 

D 

0 5 10 

1 

FIQURE 7 .  Drop length 1 versus time t for a fixed viscosity ratio p = 0.012. Lines are predictions 
of theory for different strain rates Ca for $ = 1.0 (a )  and $ = 0.6 ( b ) .  Symbols are data of Bentley 
(1985) for $ = 1.0 (V) and 0.6 (A). 

these considerations, the agreement between theory and experiment seems 
satisfactory. 

Bentley (1985) also obtained transient deformation data for strain rates slightly 
exceeding the critical strain rate. Theoretical prediction of the drop length versus time 
obtained by numerically integrating the equations for deformation and rotation, with 
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FIGURE 8. Shaded area shows the fraction of the accessible flow domain occupied by the class 
of flows with an axisymmetric stretching component. 

the drop initially at  its critical length and orientation, for a number of different strain 
rates close to the critical strain rate are compared with the data in figure 7. (The 
dimensionless length and time in this case correspond to those chosen by Bentley 
(1985) and are l / a  and t respectively.) There seems to be qualitative agreement 
between the two, though the theory under predicts the critical length. 

7. Breakup in linear flows with an axisymmetric strain component 
In general, a flow can be completely specified by a diagonal rate-of-strain tensor 

corresponding to an extensional flow and a spin vector corresponding to a solid-body 
rotation. In  the case of two-dimensional flows considered earlier, the spin vector is 
orthogonal to the principal axes of strain and the flow is completely specified by the 
relative magnitude of the vorticity (I i5 I/?). Here we study the effect of changing the 
orientation of the spin vector for a constant relative magnitude of the vorticity. In 
order to  reduce the number of parameters, we consider the class of flows that have 
an axisymmetric strain component, so that the relative orientation of the spin vector 
can be specified by a single parameter. The rate-of-strain tensor in this case is 
given by 

b = diag (a, -$a, -+a) 
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FIGURE 9. Critical dimensionless strain rate E, (a) and the corresponding critical dimensionless 
critical half-length Z,, (a), versus the orientation of the spin vector 0 for fixed viscosity ratiop = lo-' 
and different amounts of vorticity relative to strain K .  
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FIQIJRE 10. Asymptotic efficiency e, versus drop length 1 for fixed viscosity ratio p = lo-' and 
relative magnitude of vorticity K = 6 for different orientations of the spin vector 8. 

and the invariants of the flow by 

sign(a) (1+3K(3 comt9-1) 
det (M) = - 

3 d 6  

where K = 41 iB le/3a2 is the relative magnitude of the vorticity, and 0 is angle between 
the spin vector and the axis of stretching (or compression if a is negative). Here we 
consider only positive a, hence for a fixed value of tr (m) the range of det (m) is 

The upper limit corresponding to the boundary of the accessible flow domain. Hence 
the class of flows under consideration occupy only part of the accessible flow domain, 
as shown in figure 8 .  

We consider the breakup of drops in the class of flows defined above. From the 
equations derived earlier, we calculate the critical drop length and the critical strain 
rate, for different orientations of the spin vector holding the relative magnitude of 
the vorticity and the viscosity ratio constant. Figure 9(a)  shows the critical strain 
rate versus the angle 0 for several values of K. When K = 0 the orientation has no 
effect, as expected, and we obtain the result for an axisymmetric extensional flow. 
For small values of K (K = 0.6) we see an increase in the critical strain rate with 
increasing angle of orientation of the spin vector. At higher values of K we see that 
there exists a critical orientation, which depends on the value of K, at which the 
critical strain rate goes to infinity, implying that the drop cannot be broken in the 

10 B L X  168 
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flow.This value corresponds to the orientation a t  which the efficiency is undefined 
(tr (M2) < 0, det (M) = 0) and the eigenvalues are purely imaginary. The flow in this 
case has closed elliptic streamlines in planes parallel to one another, resulting in 
periodic stretching and compression of material lines (Chella & Ottino 1985a), and 
hence it is unable to cause breakup. 

The behaviour of the corresponding critical drop length is shown in figure 9(b) .  
Again we see a discontinuity in the graph at  the critical angle, but in this case the 
drop length at breakup is smaller than that for purely extensional flows as we 
approach the singular point from higher angles, and the reverse is true when we 
approach it from lower angles. The graph can be explained in terms of the behaviour 
of the asymptotic efficiency in the different regions of the accessible domain. 
Figure 10 shows the asymptotic efficiency as a function of the steady-state length 
for fixed viscosity ratio K and different 0 close to the critical orientation. When the 
flow is located to the left of the line OB (figure 8) in the accessible flow domain the 
slope of the asymptotic efficiency curve is positive (0 = 57" in figure 10) and when 
the flow is to the right of OB the slope is negative (0 = 59" in figure 10). Recall that 
at  the point of incipient stability the following equation holds : 

From the above equation we see that if the slope of the asymptotic efficiency curve 
is positive i:c < a, and if it is negative then iiC > a, thus justifying the behaviour 
displayed in figure 9(b) .  (For purely extensional flows ( K  = 0) Z:c = a.) Since one of 
the assumptions in our analysis is that the drop is long and slender, the above 
considerations indicate that the model is not well suited for studying breakup in flows 
located close to the line OB in the accessible flow domain (figure 3) in region BOCB" 
where critical drop length is small. 

Computations in this section reveal some of the typical behaviour that might 
be observed in three-dimensional flows. Such behaviour is not possible for two- 
dimensional flows. 
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